Место для рекламы
  1. Авторы

Ян Альбертович Дененберг

Псевдоним участника пиктограмма мужчиныЯн Дененберг 2
241 цитата 3 подписчика

Тройная анаграмма из 11 букв

Тройная анаграмма из 11 букв:

А прыть в дело! — проделывать — подрыватель

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  03 ноя 2020

О самостоятельном изучении иностранных языков и ещё кое о чем

Поскольку государством Израиль не признаётся право получать образование на родном языке, предполагалось, что новоприбывших из СССР будут обучать на иврите. При этом совершеннолетних иммигрантов определили в так называемые ульпаны, а вот привезённых в позднем подростковом возрасте (в моём случае — в 14 лет) поместили сразу же в обычные классы обычных израильских школ, рассчитывая, по всей видимости, на то, что подростки овладеют совершенно новым для них иностранным языком самостоятельно.

И вот…

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  25 мая 2021

Мне очень стыдно. И не только потому что в свои 47 лет я до сих пор девственник, но ещё и потому что до 47 лет я не знал, что в слове «кашлянуть» ударение падает на первый слог. И только сегодня об этом узнал.

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  20 окт 2024

Теория бесконечной вложенности симуляций

Предположим, что теория симуляции действительно верна и наша Вселенная является симуляцией (возможно, не единственной), осуществляемой в другой вселенной.

Что в таком случае мешает нам предположить, что та вселенная, в которой осуществляется симуляция нашей Вселенной, тоже, в свою очередь, является симуляцией (возможно, не единственной), осуществляемой в некоей третьей вселенной? А третья — симуляция в четвёртой, четвёртая — в пятой тощо.

Получается своего рода теория бесконечной вложенности симуляций (сравните с теорией бесконечной вложенности материи). Причём вложенность симуляций, как и вложенность материи, может оказаться бесконечной в обе стороны. Ведь и в нашей Вселенной могут существовать цивилизации, осуществляющие симуляцию других вселенных, в которых, в свою очередь, тоже есть цивилизации, осуществляющие симуляции ещё каких-нибудь вселенных, и так до бесконечности.

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  29 ноя 2022

Русские этнические школы и право получать образование на родном языке

«Ученик Аделаидской русской этнической школы Лев Песин занял 1-е место в группе 4 класса на Международной физико-математической олимпиаде.»

Итак, в Австралии русские этнические школы есть, а в Израиле их нет. То есть Австралия гарантирует своим гражданам право получать образование на родном языке, а Израиль — нет.
И как после этого можно назвать Израиль демократическим государством? Почему во всём мире люди понимают, что если языковой барьер не позволяет ребёнку хорошо учиться в школе, это может отразиться на всей его дальнейшей жизни, и только в «демократическом» Израиле не понимают? Почему в «демократическом» Израиле не соблюдается принцип равенства возможностей в образовании? Почему в «демократическом» Израиле не создаются условия для развития каждого ребёнка? То, что устраивает «демократический» Израиль с правами человека, иначе как этноцидом не назовёшь!

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  19 дек 2022

Вставьте в скобки значимое слово, которое завершает первое слово и начинает второе

Вставьте в скобки значимое слово, которое завершает первое слово и начинает второе (количество точек должно равняться количеству букв во вставляемом слове):

1) ба (. .)наж;

2) нас (. .)д;

3) вы (. .)порт;

4) про (. .)да;

5) пол (. .)да;

6) с (. .)мат;

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  06 янв 2023

Назовём прямоугольный параллелепипед дождливым, если у него длины рёбер — натуральные числа, площадь поверхности — точная степень, а объём — квадрат простого числа. Найдите все дождливые прямоугольные параллелепипеды и докажите, что других нет.

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  22 апр 2025

Дождливая Аня утверждает, что число 2 является единственным натуральным числом, равным удвоенной сумме своих нечётных делителей.
Помогите Ане это доказать!

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  13 апр 2025

Существует ли точная четвёртая степень с суммой цифр, равной четырём?
Это тоже открытая проблема, поскольку ответ до сих пор не найден.

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  15 июл 2023

Как найти семнадцатое число Резмен?

Числом Резмен назовём всякое положительное целое, у которого, если само это число разделить на количество его делителей (то есть на количество положительных чисел, на которые оно делится без остатка), в результате получится факториал (произведение нескольких подряд идущих натуральных чисел, начиная с единицы).

Известно, что первые шестнадцать таких чисел, упорядоченные по возрастанию, равны:
1, 2, 8, 12, 72, 384, 720, 5760, 6720, 64800, 181440000, 2322432000, 2351462400, 3773952000, 3991680000, 1034643456000.

Требуется выяснить, существует ли семнадцатое число Резмен. Если оно существует, найдите его или покажите, насколько велико оно может быть. Если же никакого семнадцатого числа Резмен на самом деле не существует, докажите это.

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  10 апр 2025

Как долго мы будем молча наблюдать за нарушениями в области языковых прав? Принуждение к обучению на государственном языке в израильской системе образования — это серьёзное вмешательство в личные и культурные права детей и подростков. Власти, игнорируя право получать образование на родном языке, подрывают саму основу культурного многообразия и идентичности. Это не только несправедливо, это нарушение базовых человеческих прав!

Каждый отказ от обучения на родном языке приближает нас к краю культурной ассимиляции. Молчание и бездействие в этом контексте недопустимы. Не можем мы сидеть сложа руки, позволяя стирать уникальность нашей культуры под давлением одноязычия.

Пришло время подняться и сказать: «Довольно!» Не позволим украсть будущее наших детей и подростков! Необходимо защищать наше право на языковую и культурную идентичность. Призываем к немедленным действиям и решительным изменениям в политике образования!

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  24 апр 2024

Сорок чисел Дождливой Ани.

Дождливая Аня решила найти натуральное число, которое делится на количество своих делителей, причём любое число, получаемое из него отбрасыванием одной или нескольких последних цифр, обладает тем же свойством.
К своему удивлению, Аня нашла не одно, а целых сорок таких чисел:

1, 2, 8, 9, 12, 18, 24, 80, 84, 88, 96, 128, 180, 184, 240, 248, 804, 808, 880, 882, 1284, 1800, 1840, 2480, 2488, 8080, 8824, 18000, 18008, 24804, 24880, 80802, 88240, 180000, 180008, 180080, 180088, 1800080, 1800804, 1800880.

Докажите, что Дождливая Аня нашла все такие числа.

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  07 мар 2025

Настя выписывает цифры по порядку: 12345678901234567890…

а) Докажите, что наступит момент, когда у Насти получится число, кратное 11.

б) При каком наименьшем натуральном N у Насти никогда не получится числа, кратного N?

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  02 дек 2024

На нескольких англоязычных сайтах фигурирует задача, в которой требуется найти следующее число в последовательности 1, 6, 20, 56, …
Авторами, по всей видимости, подразумевалось продолжение …144, однако у меня созрело другое и не менее красивое решение:
Назовём натуральное число привольным, если у него сумма нечётных делителей равна количеству всех делителей. Вот первые 22 привольных числа:

1, 6, 20, 56, 352, 480, 832, 2688, 4352, 9728, 13824, 47104, 67584, 71680, 184320, 319488, 475136, 1015808, 6684672, 7208960, 9699328, 12845056.

Как вам такое решение?
И как найти двадцать третье привольное число?

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  17 фев 2025

Наибольшее Тацечкино число

Назовём натуральное число Тацечкиным, если оно кратно 7, а его десятичная запись состоит только из нечётных цифр.

Найдите наибольшее Тацечкино число с суммой цифр:

а) 2015

б) 2019

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  20 окт 2019

Наконец, может оказаться, что уравнение второй степени не представляет никакого геометрического места. Тогда приходит инженер и говорит: «Не волнуйтесь, я его найду. У меня в кармане всегда есть транспортир, циркуль и линейка. А если это не поможет, я просто добавлю неизвестную переменную и скажу, что это новая физическая константа!»

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  04 мар 2024

Кто сказал, что для математики иврит не нужен?

Мне упорно продолжают твердить, что для изучения математики не требуется знать язык, на котором осуществляется обучение.

А как вообще можно учиться чему-то новому, не зная языка?

Заявление о том, что для изучения математики не требуется знание языка, является ошибочным. Да, математические концепции являются универсальными и не зависят от языка. Однако язык все же играет ключевую роль в процессе обучения. Во-первых, объяснения и лекции, как правило, проходят на определенном языке. Во-вторых, математическая терминология также требует определенного уровня языковых навыков для понимания.

Кроме того, общение с преподавателями и одноклассниками, а также чтение учебников и научных статей, безусловно, является невозможным, если вы не владеете языком обучения. Недопонимание языка может создать непреодолимые преграды на пути к усвоению материала.

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  03 сен 2023

Что стало с нашим миром?

Многие наши современники жалуются на то, что у них совершенно нет времени читать книги. Между тем, к примеру, поэма Пушкина «Братья-разбойники» читается минут за десять (если вслух и с выражением, то за пятнадцать), зато удовольствия от неё не меньше, чем от хорошего, качественного секса. Неужели люди настолько зациклились на своей работе, что не в состоянии найти эти 10−15 минут?!

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  24 авг 2020

Мой коммент к статье о витализме

Публикую мой комментарий к статье «Убийство прекрасной гипотезы уродливым фактом»: как погиб витализм.

Мочевину мы можем создать, а вот жизнь, живой организм, не можем. Попробуйте создать хотя бы бактерию. Именно создать, из неживого, а не вывести селекцией или редактированием генома уже существующих организмов.
Да и с искусственным интеллектом та же фигня — комп обыгрывает гроссмейстеров в шахматы, а написать обычное школьное сочинение на уровне второго класса не в состоянии, ибо не понимает смысла того, что пишет. И даже в той же математике, искусственный «разум» ловко щёлкает диффуры в частных производных и вычисляет тройные интегралы, а вот решить хотя бы простенькую олимпиадную задачку не в силах, опять же, в силу своей неспособности понимать естественный язык.
Так что лично я не спешу отвергать витализм с порога.

С уважением,
Ян Альбертович Дененберг,
Ноф-а-Галиль,
14 ноября 2020,
23:44:41.

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  15 ноя 2020

Право получать образование на родном языке

В современном мире, где право на образование признаётся универсальным, позиция тех, кто отрицает необходимость получения образования на родном языке, выглядит не просто архаичной, но и откровенно вредной. Именно такова позиция троллей-расистов, которые утверждают, что математика — это всего лишь формулы и цифры, и поэтому владение ивритом или любым другим языком обучения не имеет особого значения. Такое заявление не только игнорирует фундаментальные аспекты педагогики, но и демонстрирует невежес…

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  13 мая 2024