Место для рекламы
  1. Категории

Математика

480 публикаций 1 закладка

Природа познания

Традиционная точка зрения состоит в том, что познание есть «отражение» реальной действительности в человеческих понятиях.

Заметим, что термин «отражение» выбран при этом крайне неудачно, так как он ассоциируется с «зеркальным отражением», с «копированием», с «воспроизведением», на самом же деле процесс познания сущности явлений не имеет ничего общего с «отражением», понимаемом в указанном выше смысле. Не спасают и никакие дополнительные разъяснения, будто «отражение» следует понимать не как неп…

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  09 авг 2020

Две задачи для развития интеллекта

Две задачи для развития интеллекта:

Задача № 1]:

Существует ли счётное множество натуральных чисел, в котором любые два числа взаимно просты, а любые несколько (конечное количество, большее 1) чисел дают в сумме составное число?

Задача № 2]:

Таня берёт натуральное число, умножает его на 4, затем получившееся число также умножает на 4 и так далее. Если после очередного умножения Таня получает число, содержащее цифру 4 в десятичной записи, она говорит: «Стоп!» и идёт спать.
Например, если вначале Таня взяла число 2, то она сделает ровно 5 умножений: 8, 32, 128, 512, 2048.
Какое наибольшее количество умножений может проделать Таня перед тем как пойти спать?

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  23 янв 2023

Докажите, что Таня права, а Незнайка неправ

Незнайка утверждает, будто он нашёл натуральное число, кратное 5, имеющее ровно 6 различных натуральных делителей, сумма десятичных цифр которого равна 7.

Немного подумав, Таня, победительница Всететянской математической олимпиады, заявила, что Незнайка ошибается.

Докажите, что Таня права.

(Постарайтесь решить данную задачу в уме, как это сделали Таня и я.)

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  28 янв 2023

Сколько команд участвовало в турнире?

В футбольном турнире каждая команда сыграла с каждой из остальных ровно по одному разу, причём ровно половина команд ни разу не выиграли, а ровно пятая часть игр закончились вничью.

Сколько команд участвовало в турнире?

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  14 дек 2023

Таня записывает числа первых понедельников в течение некоторого невисокосного года. Каждый месяц она записывает число, на которое приходится первый понедельник месяца, а в конце года складывает все двенадцать записанных чисел. Какая наименьшая сумма могла получиться у Тани за весь год?

Изменится ли ответ, если рассматривать високосный год?

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  31 дек 2023
На доске написаны числа 9, 11, 13, 15, 17, 19. За ход разрешается стереть любые два числа, написав вместо них их сумму, уменьшенную на единицу. Через несколько таких ходов на доске окажется одно число. Каким оно может быть?
Опубликовал  пиктограмма мужчиныЯн Дененберг 2  18 сен 2025

Неудивительно что теория вероятности до сих пор числится в теориях. На практике её не существует.

Опубликовал(а)  Ксения Морис  21 авг 2016
Все цифры некоторого пятизначного числа, являющегося полным квадратом, можно уменьшить на одно и тоже число так, что получится пятизначное число, тоже являющееся полным квадратом. Найдите все такие числа и докажите, что других нет.
Опубликовал  пиктограмма мужчиныЯн Дененберг 2  16 сен 2025

В геометрии Лобачевского не существует подобных, но неравных треугольников; треугольники равны, если их углы равны.
Разве этот факт сам по себе уже не повод выбрать профессию математика?

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  05 окт 2022

Тангенс- это перекосинувшийся синус.

© Анди 2 14
Опубликовал  пиктограмма мужчиныАнди  07 дек 2012

Эту задачу не решил ни один из участников олимпиады

Можно ли, используя в десятичной записи чисел только цифры 2, 3 и 9 (каждая из этих трёх цифр должна быть использована хотя бы раз), записать три натуральных числа, одно из которых равно произведению двух других?

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  03 янв 2023
К бассейну подведены две трубы, каждая из которых работает 2 часа и 1 час — отключена. Такой режим работы позволяет любой из них заполнить бассейн за 4 часа. За какое время наполнится бассейн, если обе трубы работают в указанном режиме одновременно?
Опубликовал  пиктограмма мужчиныЯн Дененберг 2  08 окт 2025

Две задачки для прогрева мозга:

1)

Если сложить первые n натуральных чисел, то полученная сумма окажется кратной 7. Если же из этих n чисел выбрать только нечётные и сложить их, то полученная сумма окажется кратной 5. А если из этих n чисел выбрать только чётные и сложить их, то полученная сумма окажется кратной 3. При каком наименьшем натуральном n возможна описанная ситуация?

2)

Расставьте в клетки таблицы 3 на 3 натуральные числа так, чтобы все шесть сумм чисел в строках и столбцах этой таблицы были различны, а сумма всех чисел была равна наименьшей из возможных.

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  26 фев 2025

В классе, в котором учится Дождливая Аня, не более 40 человек, причём девочек больше, чем мальчиков.
Аня заметила, что количество девочек, которые учатся без троек (только на «5» и «4»), составляет более 69%, но менее 70% от количества всех девочек в классе. Аналогичная ситуация с мальчиками: более 69%, но менее 70% мальчиков учатся без троек (только на «5» и «4»).
А без двоек учатся более 91%, но менее 92% всего класса.
Сколько девочек и сколько мальчиков в Анином классе?

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  09 мар 2025

На доске выписаны цифры: 123456. Дождливая Аня поставила между ними 3 знака умножения так, чтобы получившееся при этом произведение было наибольшим.
Сколько получилось у Ани?

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  10 мар 2025

Слева кто-то подошёл — и внезапно стал орёл!

Какое наибольшее количество чисел может быть в последовательности, в которой все числа являются квадратами натуральных чисел и каждое следующее число получается из предыдущего приписыванием к нему слева одной цифры?

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  29 мар 2025

Вот, кстати, пример математической задачи, в условии которой нет ни одной цифры и ни одной формулы:

Может ли сумма двух последовательностей с предпериодами быть периодической последовательностью без предпериода?

Это для тех самоуверенных и недалёких троллей, которые утверждают, что иврит якобы не нужен для изучения математики в Израиле, и что можно прямо «с места в карьер» — приехал в Израиль, и на следующий день уже багрут по математике на 5 йехидот сдаёшь!

Между прочим, решается эта задача совсем легко.

Вот мой пример.

Первая последовательность: 0, 1, 1, 1, …

Вторая последовательность: 2, 1, 1, 1, …

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  05 мая 2025

Анастасия Макагеновна родилась в 1988 году, а Дарья Могикановна — в 1989.
Анастасия счастлива, поскольку год её рождения представим в виде суммы точного куба и точного квадрата: (-8)**3+50**2 равно 1988.
Сможете ли вы аналогичным образом осчастливить Дарью Могикановну?

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  20 дек 2024

Очень красивая олимпиадная задача

а) Докажите, что для любого целого неотрицательного n найдутся три попарно различных натуральных числа, сумма которых даёт остаток n при делении на каждое из слагаемых.

(Татьяна Юрьевна Березюк.)

б) Докажите, что для любого натурального m (большего или равного 3) и любого целого неотрицательного n найдутся m попарно различных натуральных чисел, сумма которых даёт остаток n при делении на каждое из слагаемых.

(По мотивам задачи Татьяны Юрьевны Березюк.)

#кружок6_класса #делимость_и_остатки #конструкции #примеры_и_контрпримеры #итерации

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  07 ноя 2022

Дождливая Аня выписала на доску 5 попарно различных натуральных чисел. Оказалось, что ровно в трёх из них встречается цифра 1, ровно в трёх встречается цифра 2 и ровно в трёх встречается цифра 3. Какова наименьшая возможная сумма всех чисел, выписанных Дождливой Аней?

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  25 фев 2025