Место для рекламы
  1. Категории

Арифметика

141 публикация 0 закладок

Докажите, что Таня не сможет получить точный квадрат спустя конечное количество минут

На доске написано число 3. Каждую минуту Таня приписывает к уже написанному на доске числу одну цифру справа. Причём порядок цифр таков: 9, 6, 4, 9, 6, 4, 9, 6, 4 и так далее (то есть у Тани получаются числа 39, 396, 3964, 39649, …).

Докажите, что Таня не сможет получить точный квадрат спустя конечное количество минут.

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  06 сен 2023

Существуют ли такие 19 различных натуральных чисел, что произведение любых 10 чисел кратно произведению оставшихся 9 чисел?

Я думаю, что да. Например, возьмём девятнадцать степеней двойки подряд: 2**81, 2**82, …, 2**99.

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  18 июн 2025
На Ленинградской олимпиаде 1972-го года предлагалась следующая задача:

Существует ли натуральное число, сумма цифр квадрата которого равна 1972?

Мне удалось найти натуральное число, у которого не только сумма цифр квадрата равна 1972, но и сумма цифр самого числа также равна 1972.

Сделайте это и вы, не пиша компьютерной программы и не пользуясь катькулятором.
Опубликовал  пиктограмма мужчиныЯн Дененберг 2  25 июл 2025
Не пиша компьютерной программы и не пользуясь катькулятором, найдите наибольшее 4-значное число, которое кратно сумме своих цифр и в котором первая цифра совпадает с третьей, но не совпадает со второй.
Опубликовал  пиктограмма мужчиныЯн Дененберг 2  02 авг 2025

Куб кубовский, 5177717

Куб натурального числа назовём кубовским, если он содержит хотя бы по одному разу цифры 1, 5 и 7, а других цифр не содержит.

Наименьшим кубовским кубом является куб числа 173, равный 5177717.

Найдётся ли ещё один кубовский куб?
Опубликовал  пиктограмма мужчиныЯн Дененберг 2  11 июл 2025

Число умножили на сумму его цифр.
Могло ли при этом получиться число
1800. .. 00225 (2025 нулей)?

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  26 июн 2025

О числе 20249846452762482024 замолвите слово

Существует ли точный квадрат, десятичная запись которого начинается с 2024 и оканчивается на 2024?
Очевидно, нет, поскольку число, оканчивающееся на 2024, делится на 8, но не делится на 16.
А если точная степень (выше первой) делится на 8, но не делится на 16, она может быть только кубом.
Ну, а наименьший точный куб, десятичная запись которого начинается с 2024 и заканчивается на 2024, равен 20249846452762482024. Это куб числа 2725674.
Числа 20249846452762482024 до сегодняшнего дня не было в Интернете.

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  07 окт 2024
Дождливая Аня утверждает, что нашла такое натуральное число, при увеличении которого в 12 раз получается куб, при увеличении в 20 раз — пятая степень, а при увеличении в 28 раз — седьмая степень целого числа.

Не ошибается ли Дождливая Аня?
Опубликовал  пиктограмма мужчиныЯн Дененберг 2  13 авг 2025

Докажите, что Таня права, а Незнайка неправ

Незнайка утверждает, будто он нашёл натуральное число, кратное 5, имеющее ровно 6 различных натуральных делителей, сумма десятичных цифр которого равна 7.

Немного подумав, Таня, победительница Всететянской математической олимпиады, заявила, что Незнайка ошибается.

Докажите, что Таня права.

(Постарайтесь решить данную задачу в уме, как это сделали Таня и я.)

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  28 янв 2023

Книги в подарок девочкам

Таня, Настя, Даша, Лиза, Полина и Кристина получили в подарок в общей сложности 40 книг (каждая книга была подарена ровно одной девочке), причём никакие две девочки не получили одинакового количества книг. Оказалось, что больше всех книг получила Таня, а Полина занимает второе место по количеству полученных книг. Какое наименьшее количество книг могли получить Таня и Полина вместе?

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  28 сен 2023

Две задачи для развития интеллекта

Две задачи для развития интеллекта:

Задача № 1]:

Существует ли счётное множество натуральных чисел, в котором любые два числа взаимно просты, а любые несколько (конечное количество, большее 1) чисел дают в сумме составное число?

Задача № 2]:

Таня берёт натуральное число, умножает его на 4, затем получившееся число также умножает на 4 и так далее. Если после очередного умножения Таня получает число, содержащее цифру 4 в десятичной записи, она говорит: «Стоп!» и идёт спать.
Например, если вначале Таня взяла число 2, то она сделает ровно 5 умножений: 8, 32, 128, 512, 2048.
Какое наибольшее количество умножений может проделать Таня перед тем как пойти спать?

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  23 янв 2023
На доске написаны числа 9, 11, 13, 15, 17, 19. За ход разрешается стереть любые два числа, написав вместо них их сумму, уменьшенную на единицу. Через несколько таких ходов на доске окажется одно число. Каким оно может быть?
Опубликовал  пиктограмма мужчиныЯн Дененберг 2  18 сен 2025
Все цифры некоторого пятизначного числа, являющегося полным квадратом, можно уменьшить на одно и тоже число так, что получится пятизначное число, тоже являющееся полным квадратом. Найдите все такие числа и докажите, что других нет.
Опубликовал  пиктограмма мужчиныЯн Дененберг 2  16 сен 2025

Слева кто-то подошёл — и внезапно стал орёл!

Какое наибольшее количество чисел может быть в последовательности, в которой все числа являются квадратами натуральных чисел и каждое следующее число получается из предыдущего приписыванием к нему слева одной цифры?

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  29 мар 2025

На доске выписаны цифры: 123456. Дождливая Аня поставила между ними 3 знака умножения так, чтобы получившееся при этом произведение было наибольшим.
Сколько получилось у Ани?

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  10 мар 2025

В классе, в котором учится Дождливая Аня, не более 40 человек, причём девочек больше, чем мальчиков.
Аня заметила, что количество девочек, которые учатся без троек (только на «5» и «4»), составляет более 69%, но менее 70% от количества всех девочек в классе. Аналогичная ситуация с мальчиками: более 69%, но менее 70% мальчиков учатся без троек (только на «5» и «4»).
А без двоек учатся более 91%, но менее 92% всего класса.
Сколько девочек и сколько мальчиков в Анином классе?

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  09 мар 2025

Две задачки для прогрева мозга:

1)

Если сложить первые n натуральных чисел, то полученная сумма окажется кратной 7. Если же из этих n чисел выбрать только нечётные и сложить их, то полученная сумма окажется кратной 5. А если из этих n чисел выбрать только чётные и сложить их, то полученная сумма окажется кратной 3. При каком наименьшем натуральном n возможна описанная ситуация?

2)

Расставьте в клетки таблицы 3 на 3 натуральные числа так, чтобы все шесть сумм чисел в строках и столбцах этой таблицы были различны, а сумма всех чисел была равна наименьшей из возможных.

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  26 фев 2025

Анастасия Макагеновна родилась в 1988 году, а Дарья Могикановна — в 1989.
Анастасия счастлива, поскольку год её рождения представим в виде суммы точного куба и точного квадрата: (-8)**3+50**2 равно 1988.
Сможете ли вы аналогичным образом осчастливить Дарью Могикановну?

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  20 дек 2024

Дождливая Аня выписала на доску 5 попарно различных натуральных чисел. Оказалось, что ровно в трёх из них встречается цифра 1, ровно в трёх встречается цифра 2 и ровно в трёх встречается цифра 3. Какова наименьшая возможная сумма всех чисел, выписанных Дождливой Аней?

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  25 фев 2025

По кругу было записано 9 цифр (не обязательно различных). Дождливая Аня между каждыми двумя соседними цифрами записала их сумму, а старые цифры стёрла. Не пиша компьютерной программы и не пользуясь катькулятором, определите, могло ли оказаться так, что теперь по кругу записаны (в некотором порядке) числа 10, 11, 12, 13, 14, 15, 16, 17, 18?

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  22 фев 2025