Место для рекламы
  1. Категории

Арифметика

141 публикация 0 закладок

Не простая арифметика, когда на избирателе возят воду, а привозят воздух

© Vadim Tishin 2073
Опубликовал  пиктограмма мужчиныVadim Tishin  19 ноя 2021

На нескольких англоязычных сайтах фигурирует задача, в которой требуется найти следующее число в последовательности 1, 6, 20, 56, …
Авторами, по всей видимости, подразумевалось продолжение …144, однако у меня созрело другое и не менее красивое решение:
Назовём натуральное число привольным, если у него сумма нечётных делителей равна количеству всех делителей. Вот первые 22 привольных числа:

1, 6, 20, 56, 352, 480, 832, 2688, 4352, 9728, 13824, 47104, 67584, 71680, 184320, 319488, 475136, 1015808, 6684672, 7208960, 9699328, 12845056.

Как вам такое решение?
И как найти двадцать третье привольное число?

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  17 фев 2025

Сорок чисел Дождливой Ани.

Дождливая Аня решила найти натуральное число, которое делится на количество своих делителей, причём любое число, получаемое из него отбрасыванием одной или нескольких последних цифр, обладает тем же свойством.
К своему удивлению, Аня нашла не одно, а целых сорок таких чисел:

1, 2, 8, 9, 12, 18, 24, 80, 84, 88, 96, 128, 180, 184, 240, 248, 804, 808, 880, 882, 1284, 1800, 1840, 2480, 2488, 8080, 8824, 18000, 18008, 24804, 24880, 80802, 88240, 180000, 180008, 180080, 180088, 1800080, 1800804, 1800880.

Докажите, что Дождливая Аня нашла все такие числа.

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  07 мар 2025

Как найти семнадцатое число Резмен?

Числом Резмен назовём всякое положительное целое, у которого, если само это число разделить на количество его делителей (то есть на количество положительных чисел, на которые оно делится без остатка), в результате получится факториал (произведение нескольких подряд идущих натуральных чисел, начиная с единицы).

Известно, что первые шестнадцать таких чисел, упорядоченные по возрастанию, равны:
1, 2, 8, 12, 72, 384, 720, 5760, 6720, 64800, 181440000, 2322432000, 2351462400, 3773952000, 3991680000, 1034643456000.

Требуется выяснить, существует ли семнадцатое число Резмен. Если оно существует, найдите его или покажите, насколько велико оно может быть. Если же никакого семнадцатого числа Резмен на самом деле не существует, докажите это.

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  10 апр 2025

4, 8, 32, 2312… А есть ли следующий?

У каких примориалов, увеличенных на 2, сумма делителей будет нечётной?
Ясно, что нечётную сумму делителей дают либо квадраты, либо удвоенные квадраты.
Вот первые 4 решения: 4, 8, 32, 2312.
Существует ли пятое и как его найти?

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  17 июн 2025

Найдите положительное число, которое образует гармоническую прогрессию вместе со своей целой и дробной частями.

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  25 мая 2025

В клетки таблицы размером 3 на 3 Дождливая Аня расставила все цифры от 1 до 9 — по одной в каждую клетку. Затем она вычислила суммы чисел в каждой строке, в каждом столбце и по обеим диагоналям.
Какое наибольшее количество из этих восьми сумм могут оказаться квадратами натуральных чисел?

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  31 мая 2025

Ошибка в журнале "Квант"? Или моя ошибка?

В 7-м номере журнала «Квант» 1989 года предлагалась следующая задача:

Когда Петя разбил свою копилку, в ней оказалось 16 медных монет. Он разложил их на 4 кучки по 4 монеты так, чтобы денег в кучках было поровну. Тут он заметил, что наборы монет во всех кучках разные. Сколько денег было в копилке?

В следующем номере журнала был дан ответ:

-------------------------------------------------------------

Цитата:

«Таких наборов монет два:

(2, 2, 3, 3),
(1, 3, 3, 3),
Опубликовал  пиктограмма мужчиныЯн Дененберг 2  29 июл 2025
Выписываем наименьшее простое число, затем его порядковый номер, затем следующее простое число и его порядковый номер и так далее. Всё это пишем друг за другом без пробелов. Если так написать первые 11 простых чисел с их номерами, получится число

2132537411513617719823929103111, которое тоже простое. Красиво, правда?

Число 213 253 также простое и построено по тому же принципу.
А вот третьего такого числа, кажется, нет. Во всяком случае, компьютерная проверка вплоть до первых 60 простых чисел не дала результата.
Если вдруг обнаружите новый «успешный» пример — это будет маленькая сенсация!
Опубликовал  пиктограмма мужчиныЯн Дененберг 2  04 июл 2025

Произведение первых 10 натуральных чисел, имеющих ровно 10 делителей, равно 31432982727264672153600.

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  06 июн 2024
Не пиша компьютерной программы и не пользуясь катькулятором, найдите наименьшее натуральное число, сумма цифр которого в 25 раз меньше их произведения.
Опубликовал  пиктограмма мужчиныЯн Дененберг 2  23 сен 2025

Ну и дела!
Я уже столько лет езжу на 354-ом автобусе, и только сегодня узнал, что это за волшебное число такое, 354.
Оказывается, если умножить сумму цифр числа 354 на произведение цифр числа 354, получится сумма делителей числа 354.
Действительно, у числа 354 ровно 8 делителей: 1, 2, 3, 6, 59, 118, 177, 354.
Сумма всех этих делителей равна 720, то есть 3*5*4*(3+5+4).

Но что ещё более любопытно, 354 далеко не единственное такое число, таких чисел, оказывается, немало: 1, 62, 138, 354, 435, 644, 1485, 2546, 4826, 5664, 6285, 6474, 9265, …

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  22 июн 2024
Настя придумала ребус, в котором фигурирует число ДЕСЯТЬЦИФР.

Дождливая Аня утверждает, что это число — составное.

Права ли Дождливая Аня?
Опубликовал  пиктограмма мужчиныЯн Дененберг 2  11 авг 2025
Назовём натуральное число умным, если:

1) в его десятичной записи все цифры попарно различны и нет нулей;

2) число делится на квадрат каждой из своих цифр.

Найдите все умные числа и докажите, что других нет.
Опубликовал  пиктограмма мужчиныЯн Дененберг 2  27 окт 2025

Дождливая Аня выписала на доску 4 последовательных натуральных числа (в одну строчку, в порядке возрастания).
Анина подруга Настя под каждым из выписанных Аней чисел решила написать количество его делителей. У Насти получилось 4, 6, 7, 8.
Докажите, что Настя ошиблась.

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  23 апр 2025

Назовём натуральное число сверхпроводящим, если у него сумма цифр, умноженная на произведение цифр, равна количеству делителей. Вот первые шесть сверхпроводящих чисел: 1, 11, 12, 1111, 121212, 1121211.

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  29 сен 2024

Словно дождь осенний плачет скрипка, и ворчит ритмично контрабас

9 223 372 036 854 775 807 — 1 963 119 201 617 161 330

313 151 031 619 201 612 — 1 218 119 151 633 181 912

118 231 154 613 301 912 — 1 762 018 169 131 651 912

6 121 206 181 015 221 184 — 15163 161 9 1021 0181912

121 131 015 101 541 815 — 3 161 341 641 815

14 123 125 121 131 — 21 133 033 151 631 912

9 223 372 036 854 775 807 — 192 013 181 617 161 330
Опубликовал  пиктограмма мужчиныЯн Дененберг 2  29 авг 2025
Квадраты двух последовательных натуральных чисел отличаются лишь перестановкой последних трёх цифр (без неподвижных точек). Найдите эти числа.
Опубликовал  пиктограмма мужчиныЯн Дененберг 2  07 окт 2025

Задача про хвост «2121…21».
Докажите, что сколько бы раз Дождливая Аня ни выписала подряд без пробелов число 21, найдётся точный квадрат, десятичная запись которого оканчивается на выписанное Аней число.

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  23 июн 2025

Произведение n-значного числа на n есть n-ная степень натурального числа. Найти наименьшее из таких n-значных чисел.
Для каждого n от 1 до 6 решение есть:

1, 18, 243, 1024, 20000, 497664.

Попробуйте найти решение для n, равного 7, или доказать, что его нет.

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  17 мар 2025