Место для рекламы
  1. Категории

Арифметика

141 публикация 0 закладок

Вот числа в диапазоне от 1 до 1000, у которых произведение цифр равно квадрату количества делителей, выписанные в виде последовательности через запятую:
1, 9, 41, 82, 88, 218, 236, 248, 292, 422, 824, 836, 928.

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  17 апр 2024

Дождливая Аня задумала натуральное число, в десятичной записи которого ни одна из цифр не превышает 3.
При этом:
количество нулей равно сумме количеств единиц и двоек;
количество двоек равно количеству троек;
сумма всех цифр числа равна 27.
Какое наименьшее число могла задумать Аня?

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  22 июн 2025

Головоломка для смекалистых любителей математики

Головоломка для смекалистых любителей математики:

1111 равно 8

49 равно 10

808 равно 20

2002 равно 22

173 равно 10

7609 равно?
Опубликовал  пиктограмма мужчиныЯн Дененберг 2  06 сен 2025

Получить 1000 из первых 10 нечётных, не пиша компьютерную программу

(Дисклеймер: все персонажи являются вымышленными и любое совпадение с реально живущими или когда-либо жившими людьми случайно.)

Таня выписала на доску первые 10 нечётных чисел: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19.

Расставьте между Таниными числами знаки арифметических действий (скобки использовать нельзя, группировать числа тоже нельзя) таким образом, чтобы полученное выражение равнялось 1000. Тане удалось это сделать даже не пиша компьютерную программу. Попробуйте и вы!

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  09 мар 2023

12 делителей в списках Насти и Даши

Настя написала трёхзначное число, приписала к нему его же, а у полученного шестизначного числа выписала все натуральные делители.
Затем Даша сделала то же для своего трехзначного числа. Может ли оказаться так, что ровно 12 делителей в их списках совпадут?

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  09 дек 2024

Мы любим, отпускаем и прощаем…
И арифметику любви вдруг постигаем.
Когда мужчина женщину встречает
Их встречу все «Сложением» называют
Жил человек, он вроде — единица
И вот ему приспичило влюбиться
Мы к одному прибавили один
В сложеньи «два», так думать погоди.
Теперь внимательно гляди…
Сейчас увидишь двойка станет «единицей»
Процесс сей называется — «влюбиться»
Мы говорим — он встретил половинку.
Выходит человек «один» всего на серединку
Как скажет математик — лишь одна вторая

Опубликовала  пиктограмма женщиныKN  09 янв 2012
Какое наибольшее количество последовательных натуральных чисел можно записать, чтобы сумма цифр каждого из этих чисел не делилась на 6?
Опубликовал  пиктограмма мужчиныЯн Дененберг 2  08 июл 2025

Охота за троицей: где прячутся две нечётные?

В числовом ребусе AB+BC+CA равно 1CA разные буквы означают разные цифры, отличные от нуля, причём две из них нечётны.

Не пиша компьютерной программы и не пользуясь катькулятором, определите, чему могут быть равны A, B и C.

Сколько решений у этой задачи?
Опубликовал  пиктограмма мужчиныЯн Дененберг 2  14 июл 2025

На какое натуральное число нужно умножить 2025, чтобы у полученного числа было ровно 28 натуральных делителей (включая единицу и само число)? (Найдите все возможные ответы и докажите, что других ответов нет.)

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  11 июн 2025

Дождливая Аня сложила k-тые степени первых нескольких натуральных чисел и получила сумму, которая оканчивается цифрой 7.
При каком наименьшем натуральном k такое возможно?

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  12 июн 2025

Не пиша компьютерной программы и не пользуясь катькулятором, найдите хотя бы одно натуральное число, сумма цифр которого уменьшится в 2 раза, если само число возвести в квадрат.

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  15 июн 2025

В классе девочек более 80%, но менее 81%. Какое наименьшее количество девочек может быть в этом классе?

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  02 июн 2025

Дождливая Аня выписала в тетрадь несколько последовательных натуральных чисел, 4 из которых можно представить в виде суммы квадратов двух натуральных чисел. Какое наименьшее количество чисел могла выписать Аня?

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  08 июн 2025

9998989999999999999 — загадочное число от Насти!

Трискайдекафобка Настя обнаружила, что наименьшее натуральное число, которое делится на 13 и сумма цифр которого равна квадрату числа 13, равно 9998989999999999999.

Первые 13 элементов последовательности, в которой энный элемент равен наименьшему натуральному числу, которое делится на n
и сумма цифр которого равна квадрату числа n
, выглядят так:

1, 4, 9, 88, 2995, 19998, 599998, 49999888, 999999999, 1999999999990, 319999999999999, 29999999999999988, 9998989999999999999.

Разумеется, этой последовательности пока нет в OEIS, а числа 9998989999999999999 до сегодняшнего дня не было в Интернете (впрочем, как и слова ТРИСКАЙДЕКАФОБКА).

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  23 окт 2024

Не пиша компьютерной программы и не пользуясь катькулятором, найдите наибольшее натуральное число, все цифры которого различны, при этом такое, что сумма любых трёх его цифр — простое число.

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  06 июн 2025
Natural numbers k such that concatenation of the first k positive integers ending with 1, 3, 7, or 9 (starting with 1) is prime:

2, 3, 5, 136, …

Натуральные числа k, такие что конкатенация (приписывание подряд) первых k положительных целых чисел, оканчивающихся на 1, 3, 7 или 9 (начиная с 1), является простым числом:

2, 3, 5, 136, …
Опубликовал  пиктограмма мужчиныЯн Дененберг 2  08 авг 2025
Расставьте в записи 7:3−2 скобки так, чтобы значение этого выражения было равно а) 23; б) 75.
Опубликовал  пиктограмма мужчиныЯн Дененберг 2  09 авг 2025

Дождливая Аня утверждает, что число 2 является единственным натуральным числом, равным удвоенной сумме своих нечётных делителей.
Помогите Ане это доказать!

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  13 апр 2025

Назовём натуральное число васильковым, если его можно разбить на два натуральных слагаемых таким образом, чтобы произведение этих двух слагаемых было факториалом.

Перед вами все васильковые числа, не превышающие 100:

2, 3, 5, 7, 10, 11, 14, 22, 23, 25, 26, 29, 34, 43, 54, 56, 58, 61, 62, 63, 72, 82, 89, 98.

а) Как вы успели заметить, до сих пор мы не встретили ни одного числа, которое делится на 4, но не делится на 8. Тем не менее таких чисел в этой последовательности бесконечно много. Докажите это.

б) Докажите, что для каждого натурального n найдётся бесконечно много васильковых чисел, у каждого из которых ровно n двоек в разложении на множители.

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  20 мая 2025

Дождливая Аня выписала в ряд несколько различных натуральных чисел, меньших 12. Оказалось, что в любой паре соседних чисел одно из них делится на другое.
Какое наибольшее количество чисел могла выписать Аня?

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  24 мая 2025