Место для рекламы
  1. Категории

Числа

288 публикаций 0 закладок

Произведение первых 10 натуральных чисел, имеющих ровно 10 делителей, равно 31432982727264672153600.

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  06 июн 2024

Это загадочное число 43

Все двузначные натуральные числа, кроме числа 43, записали в строчку в некотором порядке без пробелов. Докажите, что получилась десятичная запись составного числа.

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  03 июл 2022
Найдите минимальное целое число, большее 21! и являющееся точным квадратом (другого целого числа). Ответ: 51090 942 1 8334 7966761
Опубликовал  пиктограмма мужчиныЯн Дененберг 2  18 дек 2025
На доске выписали натуральные числа от 1 до 1 000 000. Затем каждое число заменили суммой его цифр. С каждым полученным числом сделали то же самое. И так до тех пор, пока на доске не останутся лишь однозначные числа. Каких чисел получится больше — единиц или двоек?
Опубликовал  пиктограмма мужчиныЯн Дененберг 2  06 дек 2025
В записи девятизначного числа используются три нуля, две единицы и по одному разу 3, 4, 6, 7. Двигаясь слева направо, вместо каждой цифры этого числа записали количество цифр, которые меньше неё и расположены справа от неё. В результате получилось число 530420100. Найдите исходное число.
Опубликовал  пиктограмма мужчиныЯн Дененберг 2  04 дек 2025
Если к факториалу числа 20 прибавить число 53, то получится простое число 2432902008176640053.
Опубликовал  пиктограмма мужчиныЯн Дененберг 2  26 ноя 2025
Дана последовательность целых чисел:

0, 1, 6, 22, 75, 250, …

Каждое число в этой последовательности, начиная с третьего, получено на основании некоторой закономерности. Найдите эту закономерность. Каким будет следующее число последовательности?
Опубликовал  пиктограмма мужчиныЯн Дененберг 2  22 ноя 2025

Одна цифра потерялась, а три числа делятся

У Насти есть карточки с цифрами 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 (по одной карточке с каждой цифрой). Одну из карточек она потеряла, а оставшиеся девять разложила в виде квадрата размером 3 на 3. Цифры в каждой строке читаются слева направо как трёхзначное число; при этом первая цифра числа не равна нулю, то есть во всех трёх строках получаются трёхзначные числа.

Оказалось, что число в первой строке делится на число во второй, а число во второй строке делится на число в третьей. Все три числа попарно различны.

а) Приведите пример такого квадрата.
б) Найдите все возможные квадраты, удовлетворяющие условиям задачи.
Опубликовал  пиктограмма мужчиныЯн Дененберг 2  20 ноя 2025
Представляю на ваш суд задачу, придуманную целенамеренно (как говорит телеведущая Олеся Лосева) для получения ответа «42».

Не пиша компьютерной программы и не пользуясь катькулятором, определите, сколько существует семизначных чисел, не содержащих 0 в своей десятичной записи и обладающих следующим свойством: как ни переставляй цифры этого числа, получится семизначное число, кратное 12.
Опубликовал  пиктограмма мужчиныЯн Дененберг 2  17 ноя 2025
В числе 9 876 543 210 зачёркиваются цифры (от 1 до 9 штук) так, чтобы оставшееся число делилось на 4. Не пиша компьютерной программы и не пользуясь катькулятором, определите, сколько таких различных чисел можно получить?
Опубликовал  пиктограмма мужчиныЯн Дененберг 2  14 ноя 2025

Что ты видишь, когда смотришь на куб? (и почему важно то, что ты не видишь)

а) На каждой грани непрозрачного куба написано некоторое натуральное число. Если несколько граней куба (одну, две или три) можно увидеть одновременно, то выписываем сумма чисел, написанных на этих гранях. Какое наибольшее количество различных чисел можно выписать?

б) А если бы речь шла об обычном игральном кубике, стандартном?
Опубликовал  пиктограмма мужчиныЯн Дененберг 2  02 ноя 2025
В десятичной записи некоторой степени тройки (с натуральным показателем) переставили цифры. Новое число вычли из первоначального. Могло ли получиться число, записанное снова теми же цифрами?
Опубликовал  пиктограмма мужчиныЯн Дененберг 2  29 окт 2025
Назовём натуральное число умным, если:

1) в его десятичной записи все цифры попарно различны и нет нулей;

2) число делится на квадрат каждой из своих цифр.

Найдите все умные числа и докажите, что других нет.
Опубликовал  пиктограмма мужчиныЯн Дененберг 2  27 окт 2025
А сколько существует натуральных чисел, у которых наибольший собственный делитель равен кубу однозначного простого числа?
Опубликовал  пиктограмма мужчиныЯн Дененберг 2  22 авг 2025
Загадка простых чисел и десятых степеней:

Найдите все простые p, q, r, при которых

p в степени 10+q в степени 10+r в степени 10−663
 — простое.
Опубликовал  пиктограмма мужчиныЯн Дененберг 2  16 авг 2025
Настя придумала ребус, в котором фигурирует число ДЕСЯТЬЦИФР.

Дождливая Аня утверждает, что это число — составное.

Права ли Дождливая Аня?
Опубликовал  пиктограмма мужчиныЯн Дененберг 2  11 авг 2025

Дождливая Аня выписала на доску 4 последовательных натуральных числа (в одну строчку, в порядке возрастания).
Анина подруга Настя под каждым из выписанных Аней чисел решила написать количество его делителей. У Насти получилось 4, 6, 7, 8.
Докажите, что Настя ошиблась.

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  23 апр 2025

Назовём натуральное число сверхпроводящим, если у него сумма цифр, умноженная на произведение цифр, равна количеству делителей. Вот первые шесть сверхпроводящих чисел: 1, 11, 12, 1111, 121212, 1121211.

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  29 сен 2024
Настя утверждает, что нашла удивительное натуральное число.

А удивительно оно, по мнению Насти, тем, что если записать рядом его квадрат и его куб (без пробела и именно в таком порядке), то получившееся число будет содержать каждую из десятичных цифр ровно по одному разу.

Можно ли верить Насте? И если да, то сколько всего таких удивительных чисел?
Опубликовал  пиктограмма мужчиныЯн Дененберг 2  12 окт 2025
Квадраты двух последовательных натуральных чисел отличаются лишь перестановкой последних трёх цифр (без неподвижных точек). Найдите эти числа.
Опубликовал  пиктограмма мужчиныЯн Дененберг 2  07 окт 2025