Место для рекламы
  1. Категории

Числа

272 публикации 0 закладок

Суть интервала времени это отношение двух чисел. Просто времени самого по себе не существует. Нет чисел нет времени.

Опубликовал  пиктограмма мужчиныГеоргий П  27 фев 2022
На Ленинградской олимпиаде 1972-го года предлагалась следующая задача:

Существует ли натуральное число, сумма цифр квадрата которого равна 1972?

Мне удалось найти натуральное число, у которого не только сумма цифр квадрата равна 1972, но и сумма цифр самого числа также равна 1972.

Сделайте это и вы, не пиша компьютерной программы и не пользуясь катькулятором.
Опубликовал  пиктограмма мужчиныЯн Дененберг 2  25 июл 2025

Существует ли функция, ...?

а) Привести пример функции, у которой все рациональные числа, отличные от нуля, являются ее периодом, а иррациональные числа периодом не являются.

б) Существует ли функция, для которой каждое иррациональное число является ее периодом, но не существует рационального числа, являющегося ее периодом?

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  26 фев 2023
Не пиша компьютерной программы и не пользуясь катькулятором, найдите наибольшее 4-значное число, которое кратно сумме своих цифр и в котором первая цифра совпадает с третьей, но не совпадает со второй.
Опубликовал  пиктограмма мужчиныЯн Дененберг 2  02 авг 2025

Куб кубовский, 5177717

Куб натурального числа назовём кубовским, если он содержит хотя бы по одному разу цифры 1, 5 и 7, а других цифр не содержит.

Наименьшим кубовским кубом является куб числа 173, равный 5177717.

Найдётся ли ещё один кубовский куб?
Опубликовал  пиктограмма мужчиныЯн Дененберг 2  11 июл 2025

«Число литераторов постоянно увеличивается, поскольку это единственная профессия, которой можно заниматься без предварительной подготовки».

Опубликовал  пиктограмма мужчиныNapoliOne2019  07 апр 2021

Число умножили на сумму его цифр.
Могло ли при этом получиться число
1800. .. 00225 (2025 нулей)?

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  26 июн 2025

О числе 20249846452762482024 замолвите слово

Существует ли точный квадрат, десятичная запись которого начинается с 2024 и оканчивается на 2024?
Очевидно, нет, поскольку число, оканчивающееся на 2024, делится на 8, но не делится на 16.
А если точная степень (выше первой) делится на 8, но не делится на 16, она может быть только кубом.
Ну, а наименьший точный куб, десятичная запись которого начинается с 2024 и заканчивается на 2024, равен 20249846452762482024. Это куб числа 2725674.
Числа 20249846452762482024 до сегодняшнего дня не было в Интернете.

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  07 окт 2024
Можно ли, используя только цифры 2, 3, 4, 9, составить два натуральных числа, одно из которых в 44 раза больше другого?
Опубликовал  пиктограмма мужчиныЯн Дененберг 2  20 авг 2025
Дождливая Аня утверждает, что нашла такое натуральное число, при увеличении которого в 12 раз получается куб, при увеличении в 20 раз — пятая степень, а при увеличении в 28 раз — седьмая степень целого числа.

Не ошибается ли Дождливая Аня?
Опубликовал  пиктограмма мужчиныЯн Дененберг 2  13 авг 2025

Пятничная коллекция задач

Задача № 1:
Таня записала в строку 10 целых чисел. Оказалось, что сумма любых пяти последовательных чисел отрицательна, тогда как сумма любых семи последовательных чисел положительна.

Задача № 2:
У натуральных чисел n и n+1 взяли по собственному делителю. Сумма этих двух собственных делителей оказалась равна 2023. Какое наименьшее значение могло иметь число n?

Задача № 3:
Можно ли разрезать квадрат со стороной 16 на треугольники, сумма периметров которых равна 100?

Задача № 4:
Учительница ма…

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  03 фев 2023

Две задачи для развития интеллекта

Две задачи для развития интеллекта:

Задача № 1]:

Существует ли счётное множество натуральных чисел, в котором любые два числа взаимно просты, а любые несколько (конечное количество, большее 1) чисел дают в сумме составное число?

Задача № 2]:

Таня берёт натуральное число, умножает его на 4, затем получившееся число также умножает на 4 и так далее. Если после очередного умножения Таня получает число, содержащее цифру 4 в десятичной записи, она говорит: «Стоп!» и идёт спать.
Например, если вначале Таня взяла число 2, то она сделает ровно 5 умножений: 8, 32, 128, 512, 2048.
Какое наибольшее количество умножений может проделать Таня перед тем как пойти спать?

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  23 янв 2023
Натуральное число n назовём непривычным, если сумма кубов всех его собственных делителей (включая 1) равна n в квадрате.
Имеется предположение, что единственным непривычным числом является число 6. Как это доказать или опровергнуть?
Опубликовал  пиктограмма мужчиныЯн Дененберг 2  06 авг 2025
На какое наибольшее количество составных слагаемых можно разбить число 2007?
Опубликовал  пиктограмма мужчиныЯн Дененберг 2  10 сен 2025

Две задачи для развития мозга

Две задачи для развития мозга:
Задача№ 1:
На Ленинградской олимпиаде 1988 года предлагалась следующая задача:
Найдите 100-значное число без нулевых цифр, которое делится на сумму своих цифр.
Тетяна сумела решить более сильную задачу, а именно найти 100-значное число, в десятичной записи которого есть только цифры 8 и 9, кратное сумме своих цифр. Причём Таня сделала это не пиша компьютерной программы и не пользуясь катькулятором.
Сделайте это и вы!

Задача № 2:
Таня сумела найти два последовательных натуральных числа, каждое из которых равно сумме 5-ых степеней своих цифр, не пиша компьютерной программы и не пользуясь катькулятором.
Попробуйте и вы!
(Число 0 натуральным не является.)

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  13 мая 2023

Вчрптък157

Вчрптък157 Натуральное число, превышающее 1, назовём екатериноекатерининским, если оно делится как на число своих делителей, так и на обоих его соседей по натуральному ряду.

Докажите, что екатериноекатерининских чисел бесконечно много.

Эта задача имеет красивое решение в одну строчку, постарайтесь до него додуматься.

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  16 ноя 2021
На доске написаны числа 9, 11, 13, 15, 17, 19. За ход разрешается стереть любые два числа, написав вместо них их сумму, уменьшенную на единицу. Через несколько таких ходов на доске окажется одно число. Каким оно может быть?
Опубликовал  пиктограмма мужчиныЯн Дененберг 2  18 сен 2025
Все цифры некоторого пятизначного числа, являющегося полным квадратом, можно уменьшить на одно и тоже число так, что получится пятизначное число, тоже являющееся полным квадратом. Найдите все такие числа и докажите, что других нет.
Опубликовал  пиктограмма мужчиныЯн Дененберг 2  16 сен 2025

Да… Миллиард число с подвохом
Один и девять нулей, десять знаков.
Успеют сделать столько вздохов,
За жизнь свою не многие однако.

Опубликовал  пиктограмма мужчиныФлайдрим Демарио  28 дек 2014

Найдите все трёхзначные числа, у которых сумма любых двух цифр даёт остаток 2 при делении на третью.

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  07 мая 2025