Задача № 1:
В 2012 году участникам Санкт-Петербургской олимпиады по математике предлагалась следующая задача:
Выберите 24 клетки в прямоугольнике 5 на 8 и проведите в каждой выбранной клетке одну из диагоналей так, чтобы никакие две проведенные диагонали не имели общих концов.
Доказывать, что выбрать 25 или более таких клеток не получится, от участников олимпиады не требовалось. Однако позже выяснилось, что доказать это совсем нетрудно. Попробуйте и вы!
Задача № 2:
а) Докажите, что для каждого…