Место для рекламы

Существует ли функция, ...?

а) Привести пример функции, у которой все рациональные числа, отличные от нуля, являются ее периодом, а иррациональные числа периодом не являются.

б) Существует ли функция, для которой каждое иррациональное число является ее периодом, но не существует рационального числа, являющегося ее периодом?

Опубликовал    26 фев 2023
0 комментариев

Похожие цитаты

Настя прихвастнула перед Дашей, что смогла, используя только цифры 2, 4, 5, 7 и 8 (каждую из них — хотя бы один раз), записать натуральное число и его куб.
Даша утверждает, что 78 — единственное натуральное число, с которым Настя могла проделать подобный маневр.
Права ли Даша, и если да, то как это доказать?

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  16 фев 2025

Настя нашла натуральное число, которое оканчивается на 72 и увеличивается в целое число раз (большее 1) от переноса «72» из конца в начало. Сделайте это и вы!

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  12 фев 2025

Две последовательных степени тройки

Две последовательных степени тройки сложили и в их сумме переставили цифры. В результате получилось большее из складываемых чисел. Какие числа складывали? Сколько решений имеет задача?

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  08 апр 2023

Назовём натуральное число изобретательным, если при записи его цифр в обратном порядке получается число, дающее остаток 1 при делении на исходное число.

Докажите, что существует бесконечно много изобретательных чисел.

(Разумеется, число не может начинаться с нуля.)

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  09 ноя 2023

Несколько задач для поднятия настроения и тренировки ума

Задача № 1:
В 2012 году участникам Санкт-Петербургской олимпиады по математике предлагалась следующая задача:
Выберите 24 клетки в прямоугольнике 5 на 8 и проведите в каждой выбранной клетке одну из диагоналей так, чтобы никакие две проведенные диагонали не имели общих концов.
Доказывать, что выбрать 25 или более таких клеток не получится, от участников олимпиады не требовалось. Однако позже выяснилось, что доказать это совсем нетрудно. Попробуйте и вы!

Задача № 2:
а) Докажите, что для каждого…

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  13 мар 2023